Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lung Cancer ; 181: 107250, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196448

RESUMO

BACKGROUND: The epidermal growth factor receptor (EGFR)-K745_E746insIPVAIK and others with XPVAIK amino-acid insertions are exon 19 insertion mutations, which, at the structural modeling level, resemble EGFR tyrosine kinase inhibitor (TKI)-sensitizing mutants. An important unmet need is the characterization of therapeutic windows plus clinical outcomes of exon 19 XPVAIK amino-acid insertion mutations to available EGFR TKIs. METHODS: We used preclinical models of EGFR-K745_E746insIPVAIK and more typical EGFR mutations (exon 19 deletion, L858R, L861Q, G719S, A763_Y764insFQEA, other exon 20 insertion mutations) to probe representative 1st (erlotinib), 2nd (afatinib), 3rd generation (osimertinib), and EGFR exon 20 insertion active (mobocertinib) TKIs. We also compiled outcomes of EGFR exon 19 insertion mutated lung cancers-from our institution plus the literature-treated with EGFR TKIs. RESULTS: Exon 19 insertions represented 0.3-0.8% of all EGFR kinase domain mutation in two cohorts (n = 1772). Cells driven by EGFR-K745_E746insIPVAIK had sensitivity to all classes of approved EGFR TKIs when compared to cells driven by EGFR-WT in proliferation assays and at the protein level. However, the therapeutic window of EGFR-K745_E746insIPVAIK driven cells was most akin to those of cells driven by EGFR-L861Q and EGFR-A763_Y764insFQEA than the more sensitive patterns seen with cells driven by an EGFR exon 19 deletion or EGFR-L858R. The majority (69.2%, n = 26) of patients with lung cancers harboring EGFR-K745_E746insIPVAIK and other mutations with rare XPVAIK amino-acid insertions responded to clinically available EGFR TKIs (including icotinib, gefitinib, erlotinib, afatinib and osimertinib), with heterogeneous periods of progression-free survival. Mechanisms of acquired EGFR TKI resistance of this mutant remained underreported. CONCLUSIONS: This is the largest preclinical/clinical report to highlight that EGFR-K745_E746insIPVAIK and other mutations with exon 19 XPVAIK amino-acid insertions are rare but sensitive to clinically available 1st, 2nd, and 3rd generation as well as EGFR exon 20 active TKIs; in a pattern that mostly resembles the outcomes of models with EGFR-L861Q and EGFR-A763_Y764insFQEA mutations. These data may help with the off-label selection of EGFR TKIs and clinical expectations of outcomes when targeted therapy is deployed for these EGFR mutated lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Afatinib/uso terapêutico , Aminoácidos/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Cloridrato de Erlotinib/uso terapêutico , Éxons , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico
2.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36066413

RESUMO

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificação de Genes , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , 5'-Nucleotidase/metabolismo
3.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150391

RESUMO

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Decitabina , Genes ras , Humanos , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
4.
Biomaterials ; 276: 121032, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303155

RESUMO

Human umbilical vein endothelial cells (HUVECs) and stromal cells, such as human lung fibroblasts (FBs), have been widely used to generate functional microvascular networks (µVNs) in vitro. However, primary cells derived from different donors have batch-to-batch variations and limited lifespans when cultured in vitro, which hampers the reproducibility of µVN formation. Here, we immortalize HUVECs and FBs by exogenously expressing human telomerase reverse transcriptase (hTERT) to obtain stable endothelial cell and FB sources for µVN formation in vitro. Interestingly, we find that immortalized HUVECs can only form functional µVNs with immortalized FBs from earlier passages but not from later passages. Mechanistically, we show that Thy1 expression decreases in FBs from later passages. Compared to Thy1 negative FBs, Thy1 positive FBs express higher IGFBP2, IGFBP7, and SPARC, which are important for angiogenesis and lumen formation during vasculogenesis in 3D. Moreover, Thy1 negative FBs physically block microvessel openings, reducing the perfusability of µVNs. Finally, by culturing immortalized FBs on gelatin-coated surfaces in serum-free medium, we are able to maintain the majority of Thy1 positive immortalized FBs to support perfusable µVN formation. Overall, we establish stable cell sources for µVN formation and characterize the functions of Thy1 positive and negative FBs in vasculogenesis in vitro.


Assuntos
Microfluídica , Telomerase , Diferenciação Celular , Células Cultivadas , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Reprodutibilidade dos Testes
5.
Blood ; 138(8): 662-673, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33786584

RESUMO

Chronic natural killer large granular lymphocyte (NK-LGL) leukemia, also referred to as chronic lymphoproliferative disorder of NK cells, is a rare disorder defined by prolonged expansion of clonal NK cells. Similar prevalence of STAT3 mutations in chronic T-LGL and NK-LGL leukemia is suggestive of common pathogenesis. We undertook whole-genome sequencing to identify mutations unique to NK-LGL leukemia. The results were analyzed to develop a resequencing panel that was applied to 58 patients. Phosphatidylinositol 3-kinase pathway gene mutations (PIK3CD/PIK3AP1) and TNFAIP3 mutations were seen in 5% and 10% of patients, respectively. TET2 was exceptional in that mutations were present in 16 (28%) of 58 patient samples, with evidence that TET2 mutations can be dominant and exclusive to the NK compartment. Reduced-representation bisulfite sequencing revealed that methylation patterns were significantly altered in TET2 mutant samples. The promoter of TET2 and that of PTPRD, a negative regulator of STAT3, were found to be methylated in additional cohort samples, largely confined to the TET2 mutant group. Mutations in STAT3 were observed in 19 (33%) of 58 patient samples, 7 of which had concurrent TET2 mutations. Thrombocytopenia and resistance to immunosuppressive agents were uniquely observed in those patients with only TET2 mutation (Games-Howell post hoc test, P = .0074; Fisher's exact test, P = .00466). Patients with STAT3 mutation, inclusive of those with TET2 comutation, had lower hematocrit, hemoglobin, and absolute neutrophil count compared with STAT3 wild-type patients (Welch's t test, P ≤ .015). We present the discovery of TET2 mutations in chronic NK-LGL leukemia and evidence that it identifies a unique molecular subtype.


Assuntos
Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Leucemia Linfocítica Granular Grande/genética , Mutação , Proteínas de Neoplasias/genética , Sistema de Registros , Doença Crônica , Proteínas de Ligação a DNA/sangue , Dioxigenases/sangue , Feminino , Humanos , Leucemia Linfocítica Granular Grande/sangue , Masculino , Proteínas de Neoplasias/sangue
6.
Front Immunol ; 11: 2090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013881

RESUMO

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Endoteliais/patologia , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Nucleotídeos Cíclicos/genética
7.
Liver Transpl ; 26(11): 1398-1408, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772465

RESUMO

We investigated the presence and severity of coronary artery disease (CAD) in orthotopic liver transplantation (OLT) candidates using coronary artery calcium score (CACS) and coronary computed tomography angiography (CCTA) as compared with the prevalence of normal and abnormal single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). A total of 140 prospective OLT candidates without known CAD underwent coronary artery calcium (CAC) scans with (n = 77) or without CCTA and coronary computed tomography angiography-derived fractional flow reserve (FFRCT ; n = 57) using a dual-source computed tomography (CT) and were followed for 2.6 ± 1.4 years. Coronary plaque was quantified using the segment-involvement score (SIS) and segment stenosis score (SSS). The mean age was 59 ± 6 years, and 65.0% of patients were male. Mean Agatston CACS was 367 ± 653, and 15.0% of patients had CACSs of 0; 83.6% received a SPECT MPI, of which 95.7% were interpreted as normal/probably normal. By CCTA, 9.1% had obstructive CAD (≥70% stenosis), 67.5% had nonobstructive CAD, and 23.4% had no CAD. Nonobstructive CAD was diffuse with mean SIS 3.0 ± 2.9 and SSS 4.5 ± 5.4. Only 14 patients had high risk-findings (severe 3v CAD, n = 4, CACS >1000 n = 10) that prompted X-ray angiography in 3 patients who had undergone CCTA, resulting in revascularization of a high-risk obstruction in 1 patient who had a normal SPECT study. Patients with end-stage liver disease have a high prevalence of nonobstructive CAD by CCTA, which is undiagnosed by SPECT MPI, potentially underestimating cardiovascular risk. Deferring X-ray angiography unless high-risk CCTA findings are present is a potential strategy for avoiding unnecessary X-ray angiography.


Assuntos
Doença da Artéria Coronariana , Reserva Fracionada de Fluxo Miocárdico , Transplante de Fígado , Idoso , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X
8.
Cancer Discov ; 9(1): 34-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297358

RESUMO

KRAS-driven lung cancers frequently inactivate TP53 and/or STK11/LKB1, defining tumor subclasses with emerging clinical relevance. Specifically, KRAS-LKB1 (KL)-mutant lung cancers are particularly aggressive, lack PD-L1, and respond poorly to immune checkpoint blockade (ICB). The mechanistic basis for this impaired immunogenicity, despite the overall high mutational load of KRAS-mutant lung cancers, remains obscure. Here, we report that LKB1 loss results in marked silencing of stimulator of interferon genes (STING) expression and insensitivity to cytoplasmic double-strand DNA (dsDNA) sensing. This effect is mediated at least in part by hyperactivation of DNMT1 and EZH2 activity related to elevated S-adenylmethionine levels and reinforced by DNMT1 upregulation. Ectopic expression of STING in KL cells engages IRF3 and STAT1 signaling downstream of TBK1 and impairs cellular fitness, due to the pathologic accumulation of cytoplasmic mitochondrial dsDNA associated with mitochondrial dysfunction. Thus, silencing of STING avoids these negative consequences of LKB1 inactivation, while facilitating immune escape. SIGNIFICANCE: Oncogenic KRAS-mutant lung cancers remain treatment-refractory and are resistant to ICB in the setting of LKB1 loss. These results begin to uncover the key underlying mechanism and identify strategies to restore STING expression, with important therapeutic implications because mitochondrial dysfunction is an obligate component of this tumor subtype.See related commentary by Corte and Byers, p. 16.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Adenocarcinoma/genética , Deleção de Genes , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT1/metabolismo
9.
Immunity ; 49(4): 585-587, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332624

RESUMO

Type I interferon (IFN) production within the tumor microenvironment is important in shaping the immune response to the tumor. In this issue of Immunity, Marcus et al. (2018) reveal that tumor cells produce 2'3'-cGAMP, which activates the STING pathway in non-tumor cells and leads to type I IFN production and the priming of natural killer cells for tumor rejection.


Assuntos
Proteínas de Membrana , Neoplasias/imunologia , Humanos , Células Matadoras Naturais , Nucleotídeos Cíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...